首页> 外文OA文献 >Joint Analysis of Multiple Algorithms and Performance Measures
【2h】

Joint Analysis of Multiple Algorithms and Performance Measures

机译:多种算法和性能指标的联合分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and time complexity). Once one has developed an approach to a problem of interest, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Standard tests used for this purpose are able to consider jointly neither performance measures nor multiple competitors at once. The aim of this paper is to resolve these issues by developing statistical procedures that are able to account for multiple competing measures at the same time and to compare multiple algorithms altogether. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameters of such models, as usually the number of studied cases is very reduced in such comparisons. Data from a comparison among general purpose classifiers is used to show a practical application of our tests.
机译:使用帕累托最优来处理多目标标准(例如,准确性和时间复杂性)的新方法的开发越来越引起人们的兴趣。一旦开发出解决感兴趣的问题的方法,那么问题就是如何将其与最新技术进行比较。在机器学习中,通常通过统计测试比较算法在不同数据集上的性能来评估算法。为此目的使用的标准测试既不能同时考虑性能指标,也不能同时考虑多个竞争对手。本文的目的是通过开发统计程序来解决这些问题,这些程序可以同时考虑多种竞争性措施,并且可以将多种算法进行比较。尤其是,我们开发了两个检验:基于广义似然比检验的频频程序和基于多项式-狄里克雷共轭模型的贝叶斯程序。我们通过发现减少这些模型参数数量的措施之间的条件独立性来进一步扩展它们,因为通常在这种比较中研究案例的数量会大大减少。来自通用分类器之间比较的数据用于显示我们测试的实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号